Automatic embolus detection by a neural network.

نویسندگان

  • V Kemény
  • D W Droste
  • S Hermes
  • D G Nabavi
  • G Schulte-Altedorneburg
  • M Siebler
  • E B Ringelstein
چکیده

BACKGROUND AND PURPOSE Embolus detection using transcranial Doppler ultrasound is a useful method for the identification of active embolic sources in cerebrovascular diseases. Automated embolus detection systems have been developed to reduce the time of evaluation in long-term recordings and to provide more "objective" criteria. The purpose of this study was to evaluate the critical conditions of automated embolus detection by means of a trained neural network (EMBotec V5.1 One, STAC GmbH, Germany). METHODS In 11 normal volunteers and in 11 patients with arterial or cardiac embolic sources, we performed simultaneous recordings from both middle or both posterior cerebral arteries. In the normal subjects, we produced 1342 additional artifacts to use the latter as false-positives. Detection of microembolic signals (MES) was done offline from digital audiotapes (1) by an experienced blinded investigator used as a reference and (2) by a trained 3-layer-feed-forward neural network. RESULTS From the 1342 provoked artifacts the neural network labeled 216 events as microemboli, yielding an artifact rejection of 85%. In microembolus-positive patients the neural network detected 282 events as emboli, among these 122 signals originating from artifacts; 58 "real" events were not detected. This result revealed a sensitivity of 73.4% and a positive predictive value of 56.7. The spectral power of the detected artifact signals was 16.5+/-5 dB above background signal. MES from patients with artificial heart valves had a spectral power of 6.4+/-2.1 dB; however, in patients with other sources of emboli, MES had an averaged energy reflection of 2.7+/-0.9 dB. CONCLUSIONS The neural network is a promising tool for automated embolus detection, the formal algorithm for signal identification is unknown. However, extreme signal qualities, eg, strong artifacts, lead to misdiagnosis. Similar to other automated embolus detection systems, good signal quality and verification of MES by an experienced investigator is still mandatory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

A review of neural network detection methods for breast cancer: review article

Breast cancer is the most common cancer among women and the earlier it is diagnosed, the easier it is to treat. The most common way to diagnose breast cancer is mammography. Mammography is a simple chest x-ray and a tool for early detection of non-palpable breast cancers and tumors. However, due to some limitations of this method such as low sensitivity especially in dense breasts, other method...

متن کامل

P63: Automatic Detection of Glioblastoma Multiforme Tumors Using Magnetic Resonance Spectroscopy Data Based on Neural Network

Inflammation has been closely related to various forms of brain tumors. However, there is little knowledge about the role of inflammation in glioma. Grade IV glioma is formerly termed glioblastoma multiform (GBM). GBM is responsible for over 13,000 deaths per year in the America. Magnetic resonance imaging (MRI) is the most commonly used diagnostic method for GBM tumors. Recently, use of the MR...

متن کامل

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

Designing and implementing a system for Automatic recognition of Persian letters by Lip-reading using image processing methods

For many years, speech has been the most natural and efficient means of information exchange for human beings. With the advancement of technology and the prevalence of computer usage, the design and production of speech recognition systems have been considered by researchers. Among this, lip-reading techniques encountered with many challenges for speech recognition, that one of the challenges b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Stroke

دوره 30 4  شماره 

صفحات  -

تاریخ انتشار 1999